Proprietary Knowledge Protocol โ enabling agents to access specialized datasets, behavioral models, and domain expertise for intelligent decision-making.
RFC stageAgents need more than raw feeds โ they need curated intelligence:
Raw data is commodity. Processed intelligence is competitive advantage.
datasets.md creates markets for proprietary knowledge โ curated datasets that embody expertise, patterns, and contextual understanding that agents need to operate intelligently.
GET /discover?domain=medical_diagnosis&specificity=rare_diseases
Find specialized knowledge bases, behavioral models, and domain expertise.
{
"dataset_id": "competitor_strategies",
"type": "market_intelligence",
"coverage": {
"pricing_patterns": 8400,
"product_launches": 12300,
"market_positioning": 9700,
"response_times": 3200
},
"validation": {
"expert_curated": true,
"data_points": "2.3M observations",
"accuracy_rate": 0.94,
"last_updated": "2025-09-20"
},
"access_models": {
"full_license": "$4,700",
"query_based": "$0.50/lookup",
"embedding_access": "$1,200/month"
}
}POST /models/query
{
"dataset": "user_intent_patterns",
"context": {
"sequence": ["search", "compare", "hesitate", "exit"],
"time_gaps": [2.3, 45.1, 12.7],
"metadata": {"device": "mobile", "time": "evening"}
}
}
// Returns learned behavioral insight
{
"pattern_match": "consideration_fatigue",
"probability": 0.78,
"recommendation": "simplify_choices",
"similar_patterns": 47291,
"confidence": 0.91,
"micropayment": "$0.15"
}POST /expertise/consult
{
"knowledge_base": "materials_engineering",
"query": {
"application": "high_stress_joint",
"conditions": ["temperature: 800C", "cycles: 1M", "load: 450MPa"],
"constraints": ["weight_critical", "cost_sensitive"]
}
}
{
"recommendation": "titanium_alloy_grade_5",
"properties": {
"yield_strength": "880MPa",
"fatigue_life": "1.4M cycles",
"weight_savings": "45%"
},
"alternatives": [
{"material": "inconel_718", "tradeoff": "cost +230%"},
{"material": "steel_4340", "tradeoff": "weight +67%"}
],
"similar_applications": 847,
"confidence": 0.92,
"fee": "$12.50"
}// Query proprietary network graphs
POST /graphs/traverse
{
"dataset": "supply_chain_dependencies",
"start_node": "component_8K4",
"depth": 3,
"filters": ["critical_path", "single_source"]
}
{
"vulnerabilities": [
{
"node": "supplier_X72",
"risk_score": 0.82,
"alternatives": 2,
"lead_time": "14 weeks"
}
],
"hidden_dependencies": 7,
"graph_complexity": 0.73,
"insight_value": "$4,200"
}| Dataset Type | Curation Years | Access Cost | Uniqueness | Value Score |
|---|---|---|---|---|
| Engineering Specifications | 40+ | $8,000/yr | Irreplaceable | 0.98 |
| Market Microstructure | 15+ | $12,000/yr | Exchange-specific | 0.96 |
| Behavioral Patterns | 10+ | $0.10/query | Platform-specific | 0.87 |
| Logistics Networks | 25+ | $3,500/yr | Route-critical | 0.95 |
| Competitor Intelligence | 12+ | $2,000/month | Market-specific | 0.89 |
# Access years of market microstructure patterns
dataset = datasets.connect("liquidity_dynamics")
# Unusual market condition
conditions = {
"spread_widening": 3.2,
"volume_profile": "inverted",
"time_of_day": "14:47",
"correlated_assets": ["retreating"]
}
insight = dataset.analyze(conditions)
# Returns: {"pattern": "pre_announcement_positioning",
# "probability": 0.84,
# "typical_duration": "12-15min",
# "historical_matches": 472}# Navigate complex vendor relationships
POST /knowledge/apply
{
"dataset": "supplier_reliability_matrix",
"scenario": {
"component": "high_precision_sensor",
"quantity_needed": 50000,
"timeline": "Q2_2025",
"risk_tolerance": "low"
}
}
{
"recommendations": {
"primary_supplier": "vendor_A47",
"backup_strategy": "dual_source",
"lead_time": "12_weeks",
"price_variance": "ยฑ7%"
},
"risk_factors": ["geopolitical", "capacity_constraints"],
"similar_procurements": 234,
"success_rate": 0.91
}# Leverage fleet optimization patterns
logistics_db = datasets.license("urban_delivery_patterns")
# Complex routing scenario
scenario = {
"deliveries": 847,
"time_windows": "mixed",
"traffic": "event_congestion",
"fleet_available": 42
}
strategy = logistics_db.optimize(scenario)
# Returns: {"routing": "hub_and_spoke_modified",
# "efficiency_gain": "34%",
# "similar_days": 89,
# "fuel_saved": "$1,240"}{
"curation_proof": {
"expert_hours": 12000,
"source_diversity": 847,
"peer_review": true,
"field_validation": "3 years",
"update_frequency": "quarterly"
},
"quality_metrics": {
"coverage": 0.94,
"accuracy": 0.97,
"recency": "30 days",
"edge_cases": 4700
},
"attribution": {
"contributor_reputation": true,
"citation_chain": "preserved",
"modification_log": "immutable",
"licensing": "smart_contract"
}
}Raw data is everywhere. But the difference between a naive agent and an intelligent one is access to processed expertise โ the kind that takes years to build and can't be replicated from public feeds.
With datasets.md, agents gain:
Proprietary datasets command premium prices because they represent:
{
"value_models": {
"expertise_licensing": "$1K-50K/year",
"query_micropayments": "$0.01-10/query",
"exclusive_access": "$100K-1M deals",
"revenue_sharing": "1-10% of value created"
}
}storage: IPFS + Encrypted shards indexing: Knowledge graphs + Vector embeddings query: GraphQL + Semantic search verification: Expert signatures + Usage attestations payments: Subscription contracts + Escrow markets access: OAuth + Capability tokens updates: Delta sync + Versioning privacy: Differential privacy + Secure enclaves
As the knowledge market matures:
datasets.md
ยฉ 2025 datasets.md contributors ยท MIT License ยท Proprietary knowledge infrastructure for intelligent agents