Proprietary Knowledge Protocol โ enabling agents to access specialized datasets, behavioral models, and domain expertise for intelligent decision-making.
RFC stage
Agents need more than raw feeds โ they need curated intelligence:
Raw data is commodity. Processed intelligence is competitive advantage.
datasets.md creates markets for proprietary knowledge โ curated datasets that embody expertise, patterns, and contextual understanding that agents need to operate intelligently.
GET /discover?domain=medical_diagnosis&specificity=rare_diseases
Find specialized knowledge bases, behavioral models, and domain expertise.
{ "dataset_id": "competitor_strategies", "type": "market_intelligence", "coverage": { "pricing_patterns": 8400, "product_launches": 12300, "market_positioning": 9700, "response_times": 3200 }, "validation": { "expert_curated": true, "data_points": "2.3M observations", "accuracy_rate": 0.94, "last_updated": "2025-09-20" }, "access_models": { "full_license": "$4,700", "query_based": "$0.50/lookup", "embedding_access": "$1,200/month" } }
POST /models/query { "dataset": "user_intent_patterns", "context": { "sequence": ["search", "compare", "hesitate", "exit"], "time_gaps": [2.3, 45.1, 12.7], "metadata": {"device": "mobile", "time": "evening"} } } // Returns learned behavioral insight { "pattern_match": "consideration_fatigue", "probability": 0.78, "recommendation": "simplify_choices", "similar_patterns": 47291, "confidence": 0.91, "micropayment": "$0.15" }
POST /expertise/consult { "knowledge_base": "materials_engineering", "query": { "application": "high_stress_joint", "conditions": ["temperature: 800C", "cycles: 1M", "load: 450MPa"], "constraints": ["weight_critical", "cost_sensitive"] } } { "recommendation": "titanium_alloy_grade_5", "properties": { "yield_strength": "880MPa", "fatigue_life": "1.4M cycles", "weight_savings": "45%" }, "alternatives": [ {"material": "inconel_718", "tradeoff": "cost +230%"}, {"material": "steel_4340", "tradeoff": "weight +67%"} ], "similar_applications": 847, "confidence": 0.92, "fee": "$12.50" }
// Query proprietary network graphs POST /graphs/traverse { "dataset": "supply_chain_dependencies", "start_node": "component_8K4", "depth": 3, "filters": ["critical_path", "single_source"] } { "vulnerabilities": [ { "node": "supplier_X72", "risk_score": 0.82, "alternatives": 2, "lead_time": "14 weeks" } ], "hidden_dependencies": 7, "graph_complexity": 0.73, "insight_value": "$4,200" }
Dataset Type | Curation Years | Access Cost | Uniqueness | Value Score |
---|---|---|---|---|
Engineering Specifications | 40+ | $8,000/yr | Irreplaceable | 0.98 |
Market Microstructure | 15+ | $12,000/yr | Exchange-specific | 0.96 |
Behavioral Patterns | 10+ | $0.10/query | Platform-specific | 0.87 |
Logistics Networks | 25+ | $3,500/yr | Route-critical | 0.95 |
Competitor Intelligence | 12+ | $2,000/month | Market-specific | 0.89 |
# Access years of market microstructure patterns dataset = datasets.connect("liquidity_dynamics") # Unusual market condition conditions = { "spread_widening": 3.2, "volume_profile": "inverted", "time_of_day": "14:47", "correlated_assets": ["retreating"] } insight = dataset.analyze(conditions) # Returns: {"pattern": "pre_announcement_positioning", # "probability": 0.84, # "typical_duration": "12-15min", # "historical_matches": 472}
# Navigate complex vendor relationships POST /knowledge/apply { "dataset": "supplier_reliability_matrix", "scenario": { "component": "high_precision_sensor", "quantity_needed": 50000, "timeline": "Q2_2025", "risk_tolerance": "low" } } { "recommendations": { "primary_supplier": "vendor_A47", "backup_strategy": "dual_source", "lead_time": "12_weeks", "price_variance": "ยฑ7%" }, "risk_factors": ["geopolitical", "capacity_constraints"], "similar_procurements": 234, "success_rate": 0.91 }
# Leverage fleet optimization patterns logistics_db = datasets.license("urban_delivery_patterns") # Complex routing scenario scenario = { "deliveries": 847, "time_windows": "mixed", "traffic": "event_congestion", "fleet_available": 42 } strategy = logistics_db.optimize(scenario) # Returns: {"routing": "hub_and_spoke_modified", # "efficiency_gain": "34%", # "similar_days": 89, # "fuel_saved": "$1,240"}
{ "curation_proof": { "expert_hours": 12000, "source_diversity": 847, "peer_review": true, "field_validation": "3 years", "update_frequency": "quarterly" }, "quality_metrics": { "coverage": 0.94, "accuracy": 0.97, "recency": "30 days", "edge_cases": 4700 }, "attribution": { "contributor_reputation": true, "citation_chain": "preserved", "modification_log": "immutable", "licensing": "smart_contract" } }
Raw data is everywhere. But the difference between a naive agent and an intelligent one is access to processed expertise โ the kind that takes years to build and can't be replicated from public feeds.
With datasets.md, agents gain:
Proprietary datasets command premium prices because they represent:
{ "value_models": { "expertise_licensing": "$1K-50K/year", "query_micropayments": "$0.01-10/query", "exclusive_access": "$100K-1M deals", "revenue_sharing": "1-10% of value created" } }
storage: IPFS + Encrypted shards indexing: Knowledge graphs + Vector embeddings query: GraphQL + Semantic search verification: Expert signatures + Usage attestations payments: Subscription contracts + Escrow markets access: OAuth + Capability tokens updates: Delta sync + Versioning privacy: Differential privacy + Secure enclaves
As the knowledge market matures:
datasets.md
ยฉ 2025 datasets.md contributors ยท MIT License ยท Proprietary knowledge infrastructure for intelligent agents